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Numerical solutions of the primitive equations are obtained for a number of boundary 
conditions, using the Gale&in method with a basis of B-splines. The splines are generated 
by a recurrence formula that allows for multiple knots, and advantage is taken of this in 
incorporating boundary conditions. The necessary integrals that occur are readily evaluated 
by expanding the B-splines in terms of Chebyshev polynomials, and the effect upon accuracy 
of changes in the basis set and order of the spline is considered. 

1. INTRODUCTION 

In recent years semianalytic techniques have emerged as strong competitors to finite 
difference methods for the solution of multidimensional partial differential equations. 
In the semianalytic methods one or more dependent variables are expanded as a 
series of functions and associated coefficients. There are a number of ways in which 
these coefficients can be determined, however, the Galerkin [l] method is one 
commonly employed. 

These techniques have been used extensively, in the form of the finite element 
method, in solving the partial differential equations arising in structural mechanics, 
but it is only lately that they have been applied to solving time dependent problems 
arising in meteorology and oceanography. 

Orszag [2, 31 has used the spectral method, in which a solution is obtained in 
terms of functions which are continuous over the whole spatial domain (usually 
Chebyshev polynomials, Legendre functions, or a Fourier expansion) to solve a 
number of meteorological problems. 

The finite element method, in which the basis consists of low-order piecewise 
polynomials, has been applied by Cullen [4] to the integration of the shallow water 
equations on a sphere. The advantages of the finite element method, in terms of 
computer storage, time, and accuracy have been demonstrated by Wang et al. [5]. 

In oceanography Rao [6] proposes a type of spectral method for the calculation of 
storm surges in a lake, using the normal modes of the lake as his basis functions. The 
finite element method has been applied by Grotkop [7] to the calculation of the M2 
tidal constituent in the North Sea. 
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In the present paper the Galerkin method is used, with a basis of B-splines, on a 
number of one-dimensional problems that arise in meteorology and oceanography 
for which analytical solutions are available. It will be shown that a set of B-splines 
can produce very accurate solutions, even when only a small basis set is employed, 
and that the boundary conditions imposed by the problem can readily be satisfied by 
the basis. The splines are generated by a simple recursion formula, which allows for 
multiple knots, and any order of spline. By expanding these splines in terms of 
Chebyshev polynomials, all the necessary integrals can be evaluated by recurrence 
relationships. 

2. MODEL EQUATIONS AND THE GALERKIN APPROXIMATION 

In one dimension the equations of motion and continuity for a single homogeneous 
layer of fluid, neglecting friction and advective terms, are given by: 

and 

gf(x,r)+Hg-(x,f)=O 

where H, a constant, is the mean depth of fluid, g is the acceleration due to gravity, 
u is the fluid speed in the x direction, and f is the total depth of the fluid. In order to 
obtain unique solutions for (1) and (2), initial conditions U(X, 0) and 6(x, 0) at time 
t = 0 and boundary conditions must be specified. The form of these is considered 
later, when the method is applied to a number of problems. 

Expressing U(X, t) and 5(x, t) as an expansion of B-spline functions M,&) and 
time dependent coefficients ai and j&(t) gives: 

where n is the order of the spline and p is the number of spline functions in 
the expansion. 

Substituting Eqs. (3) and (4) into (1) and (2), and using the Galerkin method 
(solutions for u and [ being required in the region 0 < x < L) gives 
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and 

wherej = 1, 2 ,..., p. 
Swartz and Wendroff [S] have shown that the Galerkin method can be applied to 

problems of the general form, 

%U 
- = Au 
at (7) 

yielding error estimates O(P1) where n is the order of spline, and h is the grid interval 
of a uniform grid. Equations (1) and (2) constitute a particular form of Eq. (7) with 

The set of coupled differential equations (5) and (6) can be integrated through time 
using any standard numerical method. A fourth order Runge-Kutta technique was 
used here to integrate these equations. Initial values ai and &(O) can be calculated 
by expanding the initial conditions U(X, 0) and 6(x, 0) in terms of B-splines and inte- 
grating over the spatial domain, yielding: 

and 

g 4) s,’ .r 
L 

MniMnj d.x = u(x, 0) M,, dx (9) 
0 

g MO) s,‘ Mm,Mn, dx = I 
‘ &x, 0) Mnj dx (10) 

0 

wherej= 1,2 ,..., p. 
Integrals involving only spline functions can be evaluated analytically. For well- 

behaved U(X, 0), f(x, 0) integrals involving these functions were approximated using 
Gauss quadrature. 

3. FORM OF THE BASIS FUNCTIONS AND NUMERICAL PROCEDURE 

Solution of Eqs. (5) and (6) requires the evaluation of integrals over the basis 
functions. The ease with which values of these are obtained depends upon the nature 
of the basis set. Spline functions can be readily integrated and differentiated because 
they are piecewise polynomials, and since they have a basis with small support, many 
of the integrals that occur are zero when this basis is used. 
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The basis functions used here are the B-splines (fundamental splines), which were 
first studied by Schoenberg [9] and have recently been used extensively in problems 
of interpolating and smoothing by Powell [lo] and Schumaker [l 11. Using an in- 
creasing set of N interior knots, and n knots for support, positioned outside the 
region 0 < x < L, at 

and 

the B-spline functions can readily be evaluated by the numerically stable method 
given by Cox [12] and de Boor [13, 141. This method permits an arbitrary knot 
spacing and the knots may coincide. 

In the solution of the various problems described later, a constant interior knot 
spacing was used. Thus h the grid distance (the inverse of the number of grid lengths), 
is the distance between adjacent interior knots divided by L. The grid distance being 
reduced by increasing the number of interior knots, corresponding to an increase in 
basis size. 

Rather than evaluating the integrals involving the spline functions directly, it is 
convenient to express the splines in terms of Chebyshev polynomials. Over each knot 
interval hj < x < Xj+l the B-spline is a polynomial of degree II - I or less, and can be 
expressed as 

where X = (2x - Xj - hj+l)/(hj+l - A,), for - 1 < X < 1, and T’(X) is a Chebyshev 
polynomial of the first kind. The double prime indicates that the first and last y is to 
be halved when the sum is evaluated. The yji is given by (Fox and Parker [ 151) 

with 

Using the transformation given in (II), the integrals involved in Eqs. (5) and (6) 
can be expressed in terms of integrals of Chebyshev polynomials 

hj+j -  Xj +l 

2 s T,(X) T,(X) dx and 
-1 

[‘I T,(X) 2 (A’) dX. 
* -1 
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Making the substitution X = cos 13 and using: 

~,W) ~s(-v = 0.5(~s+&u + ~is-dto, 

T&Y) = cos(r cos-l X) 

(13) 

(14) 

these integrals can be readily evaluated. 

4. APPLICATION OF THE METHOD TO SPECIFIC PROBLEMS 

(a) Periodic Boundary Conditions 

The numerical example used by Wang et al. [5] provides a good test of the applica- 
tion of the method to a problem having periodic boundary conditions. 

The initial conditions are: 

and 
24(x, 0) = U, sin 27rrxlL 

8(x, 0) = H. 
05) 

Boundary conditions are given by: 

u(x, t) = 4x + L 0, 
(16) 

5(x, t> = 56 + ‘5 0, 

where U, is a constant amplitude, r is an integer determining the wavelength, H, a 
constant, is the depth of fluid, taken as 9.184 km, and L = 10,500 km, g = 9.81 m/se?. 

To test the accuracy of the method, .$(x, t) and U(X, t) were calculated at 200 equally 
spaced points in the region 0 6 x < L at each time step, and the maximum differences 
between these and the analytic solution given by Wang et al. [5] were obtained. The 
maximum value of the error in [@I[) and u(du) (normalized by dividing by H and 
U,, , respectively) which occurred during each integration period is given in the tables. 

Table I presents the results for r = 1.0, U,, = 54.6 m/set, using a cubic B-spline 
(n = 4) in both single precision (s.p.) (7-figure accuracy) and double precision (d.p.) 
(16~figure accuracy). A time step of 600 set (approximately l/60 of the period) was 
used, except in the case of 18 grid lengths where a smaller time step (300 set) was 
required to prevent numerical errors in the time integration having a large effect. 

Comparing single-precision and double-precision results in Table I at 10 hr in 
particular, it is evident that as the number of grid lengths increases (i.e., h decreases), 
precision problems associated with the inversion of the matrix of integrals having i,j 
element ji MiMj dx (used in solving Eqs. (5) and (6) with the Runge-Kutta method) 
and the solution of the resulting set of coupled differential equations become more 
important, as indicated by the deterioration of the single-precision results. 

58112711-9 



128 A. M. DAVIES 

TABLE I 

Errors Using Fourth Order B-Splines (r = l.O), with a Periodic Boundary Condition 

Time 
(hr) 

6 grid lengths 

s.p. d.p. 

12 grid lengths 

s.p. d.p. 

18 grid lengths 
.- 

s.p. d.p. 

10 At 
AU 

3.9lE-4" 
2.16E-3 

3.900-& 
1.960-3 

20 A5 
AU 

4.65E-4 3.910-4 
2.4OE-3 1.980-3 

30 A5 
AU 

5.51E-4 
2.66E-3 

3.9204 
2.01 D-3 

40 A5 
AU 

6.37E-4 3.950-4 
2.91E-3 2.050-3 

50 A5 7.21 E-4 3.990-4 
AU 3.17E-3 2.110-3 

60 At 
AU 

8.40E-4 4.020-4 
3.42E-3 2.160-3 

3.31E-5 2.010-5 
1.65E-4 1.8504 

4.69E-5 
2.25E4 

2.01 D-5 
2.050-4 

6.38E-5 2.000-5 
2.88E-4 2.5304 

8.73C5 
3.48E-4 

2.01 D-5 
3.020-4 

1.03E-4 
4.21 E-4 

2.01 D-5 
3.500-4 

1.2OE-4 2.020-5 
4.91E-4 3.990-4 

4.68E-5 4.130-6 
1.17E-4 9.380-5 

8.86E-5 
2.23E-4 

5.350-6 
1.690-A 

1.35EA 7.700-6 
3.55E-4 2.510-4 

1.81E-4 1.010-5 
4.6OE4 3.370-4 

2.29E-4 1.250-5 
5.75E-4 4.270-4 

2.75E-4 1.490-5 
7.07E-4 5.180-4 

a 3.97E-4 = 3.97 x lo+ E indicating single precision. 
b 3.900-4 = 3.90 x 1O-4 D indicating double precision. 

DuPont [16] gives error bounds, CJz* and C2h3, C, and C, positive constants, when 
the Galerkin method is applied to the solution of this problem using a basis of smooth 
cubic splines and Hermite cubic functions, respectively. From these error estimates it 
is evident that errors of a similar order of magnitude arise using cubic splines with 6 
grid lengths, as with 12 Hermite cubic functions. Wang et al. [5] solve Eqs. (1) and (2) 
using initial conditions (15) and boundary conditions (16) with Hermite cubits and 
obtain after a IO-hr integration period, with a basis of 12 functions, LIE = 2.130-4 
compared with Of = 3.9004 (Table I, cubic splines, 6 grid lengths). 

Errors for Y = 2.0, U, = 27.3 mjsec should be of the same order of magnitude 
with a basis of 18 Hermite cubits, as cubic splines with 10 grid lengths. Wang et al. [5] 
using a basis of 18 Hermite cubic functions with a time step of 1.25 min give de 
(10 hr) = 2.790-d compared with 4.550-4 (Table III, cubic splines, 10 grid lengths). 
Although a different order of time integration, and size of time step were used here 
from that of Wang et al. [5], comparison of the computed errors appears in reasonable 
agreement with the theoretical results of DuPont [16]. 

Since comparable accuracy is obtained using cubic splines, 10 grid lengths, a time 
step of 10 min, and the fourth-order Runge-Kutta technique to that obtained with 
18 Hermite cubic functions and a smaller time step, the use of cubic splines with the 
Runge-Kutta method appears computationally more economical. 
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It is evident from the error bounds for cubic splines that having h should diminish 
the error by a factor of 16. Comparing double-precision errors in Table I for 6 and 12 
grid lengths, the error in elevation is reduced by a factor of 19, and the error is current 
by a factor of 11, in reasonable agreement with theoretical estimates, although as the 
number of grid lengths increases the reduction in error diminishes due presumably to 
increased rounding error. 

Swartz and Wendroff [17, 181 examine the errors which arise in applying the finite 
element method with a basis of smooth spline functions to the model problem, 

8u 6u 
at=%’ (17) 

They derive an error estimate E for the solution of (17), with sinusoidal initial condi- 
tions and periodic boundary conditions, of the form, 

fl (l,N:i)2” E = -2=N j=,-” , (18) 
,Lm (l/N ; p 

where N = number of grid intervals per wavelength, and n is as defined previously. 

TABLE II 

Errors Using Sixth-Order B-Splines (r = 1.0) with a Periodic Boundary Condition 

Time 
0-4 

6 grid lengths 

S.P. d.p. 

12 grid lengths 

s.p. d.p. 

10 At 
AU 

20 A< 
AU 

30 Af 
AU 

40 A4 
AU 

50 A6 
AU 

60 AE 
AU 

1.07E-4 1.350-5 
1.57E-4 1.160-4 

1.82&4 
2.62E-4 

1.350-5 
1.600-d 

2.61E-4 1.350-5 
3.72E-4 2.0504 

3.40E-4 
4.73E-4 

1.420-5 
2.530-I 

4.19E-4 
5.59E-4 

1.560-5 
3.020-d 

4.91lG4 1.670-5 
6.48E-4 3.520-4 

2.03E-5 
1.74E-4 

3.450-d 
9.290-5 

3.57E-5 
3.16E-4 

6.47D-6 
1.9104 

5.03E-5 9.490-6 
4.85Ell 2.9504 

6.71 E-5 1.250-5 
6.5OEA 4.050-4 

8.35E-5 
8.19E-4 

1.56D-5 
5.161M 

l.OOE-4 1.860-5 
9.96E-4 6.300-4 
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TABLE III 

Errors Using Fourth- and Sixth-Order &Splines (r = 2.0) 
with a Periodic Boundary Condition 

Time 
(W 

Fourth-order splines, Sixth-order splines, 
number of grid lengths number of grid lengths 

6 10 12 6 10 12 

10 A[ 1.460-2 4.550-4 1.930-4 1.630-3 3.140-5 2.100-5 
AU 6.570-2 2.420-3 1.040-3 8.550-3 2.450-4 1.940-4 

20 A8 
AU 

2.780-2 4.8304 1.990-4 2.280-3 5.230-5 4.040-5 
1.380-l 2.640-3 1.170-3 1.090-2 3.970-4 3.8804 

30 A5 
AU 

4.130-2 5.3104 2.110-4 2.950-3 7.090-5 6.030-5 
2.110-l 2.950-3 1.310-3 1.460-2 5.6404 5.8404 

40 A( 
AU 

5.460-2 5.980-4 2.2904 
2.800-l 3.330-3 1.490-3 

3.720-3 9.040-5 8.080-5 
1.960-2 7.450-4 7.950-d 

50 06 
AU 

6.770-2 6.760-4 2.5004 
3.660-l 3.750-3 1.680-3 

4.520-3 1.1004 1.010-4 
2.420-2 9.730-4 1.03 D-3 

60 05 
AU 

8.010-2 7.5904 2.750-4 5.350-3 1.300-4 1.2104 
4.360-l 4.290-3 1.920-3 2.910-2 1.150-3 1.230-3 

It is interesting to compare errors derived using (18) for this model problem with 
those calculated numerically at t = 10 hr (Tables I-III), for Eqs. (1) and (2) with 
initial conditions (15) and periodic boundary conditions (16). 

For fourth-order splines (n = 4) and six grid intervals per wavelength (N = 6) 
Eq. (18) gives E = 9.020-S compared with A[ = 3.900-4 (Table I, 6 grid lengths) 
and for n = 4, N = 12, E = 2.600-7 compared with 06 = 2.010-5 (Table I, 
12 grid lengths). With sixth-order splines (n = 6, N = 6) Eq. (18) gives E = 1.520-7 
and for n = 6, N = 12, E = 2.080-11 compared with Of = 1.350-5 and 3.450-6, 
respectively (Table II). 

From these results it is evident that the numerical solutions are not as accurate as 
error estimates derived from the model equation suggest. It is obvious comparing 
single-precision and double-precision results in Tables I and II that rounding errors 
reduce the accuracy of the numerical solution as the number of terms in the expansion 
and order of spline increase and hence for the higher N values considered here the 
numerical result will contain a larger error than that suggested by theory. However, 
for the case r = 2.0, II = 4, with six grid intervals (i.e. N = 3) the numerical result 
A[ = 1.460-2, AU = 6.570-2 (Table III) compares well with the error estimate 
E = 7.310-2, and for sixth order splines (n = 6, N = 3) the numerical result A,$ = 
1.630-3, du = 8.550-3 is also comparable with the error estimate E = 4.600-3. 
These results illustrate the increase in accuracy obtained using the higher order spline. 
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In these two cases the computed error is fairly large and the effect of rounding is 
presumably small in comparison. 

From the error estimate (Eq. (18)) it is evident that for a given n and N, the error is 
independent of the number of grid intervals. Comparing numerical results at t = 
10 hr, n = 6, r = 2.0, d.$ = 2.100-5 using 12 grid intervals with 05 = 1.350-5 for 
r = 1.0, IZ = 6; using 6 grid intervals it is evident that comparable errors are also 
obtained numerically for a given n, N, with a different number of grid intervals, 
although from Tables I-III it is evident that as the number of grid intervals increases 
for a given n, N the error also increases. 

Although these calculations were performed for equally spaced knots, the method 
for evaluating the B-splines allows for unequal knot intervals. 

(b) Specification of Elevation and Current at the Same Boundary 

Periodic boundary conditions as defined in the preceding problem are rarely 
encountered in oceanography. 

An example of more realistic character is concerned with a progressive wave in a 
channel, where the elevation and current on the boundary x = 0 vary in a periodic 
manner, given by 

go, t) = c cos wt = zJt), 
u(0, t) = AC cos cot = 24()(t). (19) 

The analytic solutions of (1) and (2) subject to these boundary conditions are given 
by 

6(x, t) = C cos (rx - wt), 

u(x, t) = AC cos(rx - wt), 
(20) 

where A = (g/H)li2, Y determines the wavelength, C is the amplitude, and o = 
r(gH)li2 is the period. The solution represents a progressive wave traveling along the 
channel from x = 0 to x = L. 

The implementation of boundary conditions can be accomplished by two methods. 
If the knot at x = 0 has a multiplicity of n - 1, then all the B-splines in expansions (3) 
and (4) except the first will vanish at this point. Thus the expansions for 4 and u which 
satisfy the boundary conditions become 

u(x, t) = y M,(x) + i cxJ&(x) 
i=2 

and 

(21) 

(22) 

where A, = M,(O), andp is the number of basis functions. 
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The unknown coefficients 01~ and pi are determined as before, using MZ , MS ,..., M, 
as test functions giving two sets of (p - 1) equations. 

In the second method, a single knot is placed at x = 0. In this case the first n - 1 
B-splines will be nonzero at this point, and in order to satisfy the imposed boundary 
conditions the differential equations given by (5) and (6) must be solved subject to the 
constraints imposed by the boundary conditions on the first IZ - 1 01’s and IZ - 1 /3’s, 
namely: 

and 
ap4, + a,A, + ... t ol,-p4.-1 = u,(t) (23) 

&A, i pd, + ... + LA-1 = z&> (24) 

where Ai = Mi(0). 
In the previous problem, where periodic boundary conditions were used, these 

conditions imposed the constraint that the wave had the same amplitude and phase at 
x = 0 and x = L. In this problem that constraint is no longer required, and values of 
rL which are not integer multiples of r were chosen to ensure different amplitudes and 
phases at x = 0 and x = L, namely, (i) rL = 1.67r, (ii) 3.2n, (iii) 6.47~. The value of rL 
is important since from (20) it determines the number of wavelengths present. 

TABLE IV 

Variation of Errors with Time for Problem (b) (ii) 
Using Fourth-Order B-Splines 

Time 
cycles 

3 

6 

9 

12 

15 

Number of grid lengths 

5 10 15 

4.920-t 4.660-3 5.8504 

5.230-l 4.630-3 5.61 D-4 

4.720-l 4.270-3 5.71 D-4 

4.920-l 4.800-3 5.660-4 

5.21 D-l 4.600-3 5.620-4 

Initial conditions corresponding to (19) with t = 0 were used, together with a time 
step of l/60 of the period. After a few cycles, the error reached a value determined by 
the periodic forcing of the boundary conditions, and the rounding error in the calcula- 
tion. Table IV gives the normalized maximum error found at 200 points in the eleva- 
tion for case (ii) rL = 3.2~. The current is related to the elevation by the constant A. 
Table IV shows that the error is fairly constant after the first few cycles. 

Identical calculations were performed for the three waves, cases (i), (ii), and (iii), 
with both fourth- and sixth-order B-splines; the results after 15 cycles are summarized 
in Table V. 
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TABLE V 

Errors after 15 Cycles for Problem (b), Using a Number 
of Wavelengths (Cases (i), (ii), and (iii)) 

Case 

Fourth-order splines, Sixth-order splines, 
number of grid lengths number of grid lengths 

- 
5 10 15 5 10 15 

(9 4 3.910-3 1.590-4 2.X0-5 1.690-4 1.010-5 1 HO-5 

(ii) A5 5.21 D-l 4.600-3 5.6204 5.690-2 2.300-4 2.110-5 

(iii) ALf 1.270-O 2.560-l 2.980-2 1.060-O 3.620-2 1.820-3 

Calculations for all cases were also repeated using the method of constraining the 
expansion coefficients to satisfy the boundary conditions; and gave results which 
agreed with Table V. 

Swartz and Wendroff [8] give error estimates 0(/z”-l) for this problem, hence for 
fourth-order B-splines, halving the grid spacing reduces the error by a factor of 8, 
and for sixth-order B-splines by a factor of 32. 

Comparing errors (Table V, case (i)) for 5 and 10 grid lengths, for fourth-order 
B-splines the error is reduced by a factor of 2.5, and for sixth-order B-splines by a 
factor of 16, although for case (iii) the error is reduced by a factor of 5 and 30, respec- 
tively, in reasonable agreement with theory. In case (i), sixth-order B-splines, five 
grid lengths, the error is fairly small, and it is obviously affected appreciably by 
rounding error as the number of basis functions is increased, actually becoming 
larger when the number of grid lengths is increased from 10 to 15. 

Comparing errors from cases (i) and (ii) (Table V), the effect of halving the wave- 
length can be determined, and it is obvious that to maintain the same order of accuracy 
the number of grid lengths must double, halving h; e.g., for fourth-order splines 
(case (i)) 05 = 3.910-3 with 5 grid lengths, compared with case (ii), 

05 = 4.600-3 with 10 grid lengths, and a similar result occurs for sixth-order 
B-splines. 

From the error estimate it is obvious that the error is reduced as the order of spline 
increases, although from Table V it is evident that this improvement diminishes from 
case (i) to case (iii). Thus with 5 grid lengths, using a sixth-order B-spline instead of a 
fourth-order B-spline, for case (i) the error is reduced by a factor of 23, for case (ii) by 
9, and for case (iii) by 1.2. 

(c) Elevation and Current Specified at Opposite Bounhries 

Consider a gulf connected to a tidal ocean, with the closed end of the gulf at x = 0 
and the open end at x = L. At x = L there is a forced sinusoidal variation in the 
elevation. 
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The appropriate boundary conditions are 

u(0, t) = 0 for all t, 

&L, t) = A cos wt. 

Analytic solutions of (1) and (2) with these boundary conditions give 

(25) 

u(x, t) = AC ;ro;;L sin wt, 

(26) 
5(x, t) = A z cos cd, 

where A is the amplitude of the forcing sinusoid, w is the frequency, C = (gH)lj2, 
and r = w/C determines the wavelength. Only the value of rL is important in deter- 
mining the number of basis functions required; however, since the problem is one 
that occurs frequently in oceanography, typical values of the other parameters were 
used, namely, L = 300 km, H = 90.8 m, g = 9.81 m/sec2, A = 1.0 m. 

Two calculations were performed using (i) rL = 6.0 and (ii) rL = 12.0. Initial 
conditions corresponding to (26) with t = 0 were used, together with a time step 
l/60 of a period. After a few cycles the error reached a nearly constant value, and the 
maximum errors d[ and du after 15 cycles are given in Table VI. 

TABLE VI 

Errors after 15 Cycles for Problem (c), Cases (i) and (ii) 

Case 

(9 

(ii) 

At 
AU 

Al 
AU 

Fourth-order Bsplines, Sixth-order B-splines, 
number of grid lengths number of grid lengths 

6 10 12 6 10 12 

7.090-3 4.320-4 1.760-4 2.980-4 2.660-4 1 S7D-4 
3.470-3 1.99D4 7.640-S 1.070-4 1.020-4 5.700-S 

l.lOD-0 7.740-2 2.290-2 3.010-l 9.490-d 4.790-4 
2.960-l 2.630-2 8.030-3 1.040-2 3.940-4 1.990-d 

The boundary conditions were satisfied by applying constraints to the expansion 
coefficients as described previously. This example is of interest not only because 
boundary conditions are applied to f and u at opposite ends of the channel, but unlike 
the case of the progressive wave, the elevation and current are out of phase in both 
space and time. From Table VI it is evident that doubling the number of grid lengths 
for fourth-order B-splines in both cases (i) and (ii) reduces the error by a factor of 
approximately 40. Using sixth-order B-splines for case (i) little improvement occurs; 
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here the use of six grid lengths gives quite accurate results, although for case (ii) an 
improvement of the order of approximately 60 occurs. 

Again it is necessary to double the number of grid lengths to maintain accuracy as 
the wavelength is halved, and an improvement in accuracy is evident with the higher 
order spline. 

(d) Current Spekjied on Opposite Boundaries 

Analytic solutions of Eqs. (1) and (2) for oscillations of a body of water in a channel 
closed at both ends (~(0, t) = u(L, t) = 0 for all t) are given by 

u(x, t) = 

&, t> = 

Csiny sin ?.!!I! T , 

(27) 
TH 
zccosy co? T ) 

where C is the amplitude and T = 2L/(gH)lj2 is the period. Numerical values used 
were L = 300 km, H = 90.8 m, g = 9.81 m/sec2, and C = 1.0 m/set; the initial 
conditions are given by (27) with t = 0, a time step l/60 of the period being employed 
in the integration. Two calculations were performed with (i) r = 1.0, (ii) r = 2.0, and 
maximum errors after 15 cycles are presented in Table VII. To check the stability of 
the results the calculation was continued for over 100 cycles, and results consistent 
with Table VII were obtained. The boundary conditions of zero flow were readily 
incorporated by using a knot of multiplicity n - 1 at the points x = 0 and x = L. 

TABLE VII 

Errors after 15 Cycles for Problem (d), Cases (i) and (ii) 

Case 

Fourth-order B-splines, Sixth-order B-splines, 
number of grid lengths number of grid lengths 

5 7 10 5 7 10 

(9 A5 4.140-3 7.090-I 5.560-5 5.260-5 4.410-5 4.260-S 
AU 2.51 D-4 6.450-5 1.950-5 1.380-S 1.320-5 1.310-5 

(ii) A6 2.630-2 4.980-3 3.300-3 2.690-3 1.970-3 1.940-3 
AU 9.640-3 2.160-3 7.200-d 7.1704 6.580-4 6.550-4 

The examples given in this section illustrate the ease with which various boundary 
conditions involving specification of elevations, currents, and periodic conditions can 
be incorporated. 

Comparison of the results obtained in case (a) emphasizes the improvement in 
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accuracy obtained using cubic spline functions rather than Hermite cubits, this 
improvement being comparable with that expected from the error bounds. 

Results for all cases considered show that as the wavelength is halved the grid 
spacing must also halve to maintain accuracy (for a fixed order of spline), a result to 
be expected from the theoretical error estimates. 

The errors computed here are maximum errors, rather than errors computed using 
the L, norm, the norm associated with the Galerkin technique, and also contain 
errors due to rounding, making comparison of these results with theoretical error 
bounds particularly difficult. 

From the tables it is evident that the improvement in accuracy suggested by the 
error bounds, as the order of spline and number of grid intervals is increased, dimi- 
nishes due to the increasing number of numerical operations required, although the 
error bounds give considerable insight into the variation of these errors with basis 
size, order of spline, and wavelength of solution. 

5. CONCLUSIONS 

The results presented for the different cases demonstrate how readily the various 
boundary conditions can be incorporated using a basis of B-splines. Using the 
recurrence algorithm to generate these splines allows their order to be readily changed, 
and the multiplicity and positions of the knots are completely flexible. 

The method yields accurate results for all boundary conditions considered, the 
accuracy being improved in accord with theoretical error bounds as the number of 
basis functions and order of spline increase. 

The high accuracy obtained throughout the whole spatial domain for all the 
problems of oceanographic interest, with a small number of grid intervals, illustrates 
the power of the Galerkin method when applied to these problems. 
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